GENERALIZED MYASTHENIA GRAVIS (gMG)

OVERVIEW

Myasthenia gravis (MG) is a debilitating, chronic and progressive autoimmune neuromuscular disease that can occur at any age, but most commonly begins for women before the age of 40 and men after the age of 60.¹⁻⁴ It typically begins with weakness in the muscles that control the movements of the eyes and eyelids, and often progresses to the more severe and generalized form, known as generalized myasthenia gravis (gMG), with weakness of the head, neck, trunk, limb and respiratory muscles.⁶

While most patients with gMG can be managed with therapies for MG, 10–15% of patients fail to respond adequately to or cannot tolerate multiple therapies for MG and continue to suffer profound muscle weakness and severe disease symptoms that limit function.²⁻⁷ Between 53 and 75% of these patients also have auto-antibodies against the acetylcholine receptor (AChR) that plays an important role in the communication between nerves and muscles.⁶,⁸⁻¹⁰

Patients with gMG who fail to respond adequately to or cannot tolerate multiple therapies for MG and who are anti-AChR antibody-positive represent an estimated 5–10% of patients with MG.⁵,⁹,¹¹,¹²

SYMPTOMS AND COMPLICATIONS

Patients with gMG can suffer from slurred speech, choking, impaired swallowing, double or blurred vision, disabling fatigue, immobility requiring assistance, shortness of breath and episodes of respiratory failure. Complications, exacerbations and myasthenic crises can require hospital and intensive care unit admissions with prolonged stays, and can be life-threatening.²,³,¹³

10–15% of patients with gMG fail to respond adequately to or cannot tolerate multiple therapies for MG.⁴,⁶

Patients continue to suffer profound muscle weakness and severe disease symptoms that impact function.⁵⁻⁷

CAUSES

In MG, an autoimmune response leads to progressive inflammation and damage at the neuromuscular junction (NMJ), the area where nerve cells reach the muscles they control. This damage impairs the communication between nerve and muscle, which in turn leads to a loss of normal muscle function.²,³

In patients with MG who are anti-AChR antibody-positive, these auto-antibodies bind to the AChR, a receptor located on muscle cells in the NMJ and used by nerve cells to communicate with the muscle. The binding of these auto-antibodies to the AChR activates the complement cascade, which is another component of the immune system. The chronic complement activation by anti-AChR antibodies results in the localized inflammation and destruction of the muscle membrane at the NMJ.²,⁵,¹⁴,¹⁵

DIAGNOSIS AND MANAGEMENT

MG is typically diagnosed with a physical examination to evaluate distinct symptoms of muscle weakness such as impaired eye movement, droopy eyelids, inability to hold the head straight, speech disturbances and limb weakness. Blood tests for anti-AChR or other antibodies are also used, as well as nerve and muscle stimulation and chest computed tomography or magnetic resonance imaging.³,⁶

Prior to the availability of complement inhibition, therapies for gMG included acetylcholinesterase inhibitors, corticosteroids and other immunosuppressive therapies.³,⁶ Plasma exchange and intravenous administration of immunoglobulin to remove or neutralize abnormal antibodies from the blood, and the infusion of antibodies from donated blood, may be used as “rescue therapy” for severe disease exacerbations.⁶ The surgical removal of the thymus gland, which is often abnormal in patients with MG, is recommended for patients who develop tumors of the thymus gland (thymoma) and some patients without thymoma.³

For more information on MG, visit the Myasthenia Gravis Foundation of America website at myasthenia.org.
References


