ResMed

MEDIA FACTSHEET

SLEEP-DISORDERED BREATHING IN HEART FAILURE

KEY FACTS

- Europe has an estimated 14 million patients suffering from heart failure and, as life expectancy increases, it is likely that so will this disease.^{1,2}
- Sleep-disordered breathing (SDB) is one of the most common co-morbidities in people with chronic heart failure and is estimated to be present in almost three quarters of patients.^{3,4,5}
- SBD causes a variety of issues that can put additional stress on a failing heart. The condition has therefore been linked to poorer outcomes in this patient population.⁶
- Despite high prevalence and potentially serious effects, the diagnosis and correct treatment of SBD in heart failure remains low.⁷
- The two main types of SDB are obstructive sleep apnea (OSA) and central sleep apnea (CSA), the latter is often associated with Cheyne-Stokes respiration (CSR). ⁵
- CSA-CSR is a common form of sleep apnea where periods of hyperventilation alternate with central apneas (prolonged airflow pause) and/or hypopneas (air flow reduction).⁵
- In Europe, as many as 7 million people are suffering with heart failure combined with CSA-CSR, and could be at increased risk of death compared to people with heart failure alone.^{1,2,7,8,12}
- CSA-CSR can be effectively treated with adaptive servo-ventilation (ASV); a noninvasive ventilator therapy where an easy-to-fit mask carefully senses breathing patterns and makes intelligent adjustments that stabilise breathing.

Heart failure

- Heart failure is a common, costly and potentially fatal condition, which occurs when the heart is prevented from, or unable to, pump enough blood to maintain the body's needs.⁹
- Common symptoms of heart failure include breathlessness or fatigue, either at rest or during exertion, ankle swelling and evidence of cardiac dysfunction at rest.¹⁰

Sleep-disordered breathing (SDB)

- Sleep-disordered breathing (SDB) is a term commonly used to describe atypical breathing during sleep. It usually refers to a patient whose breathing rate increases and/or decreases in an unusual fashion, leading to pauses in breathing and reduced blood oxygen saturation levels.⁵
- SDB has been linked to a number of potentially harmful health issues, however it is commonly recognised to disrupt sleep, lead to a low oxygen saturation level and cause, or exacerbate, cardiovascular complications such as heart failure.⁵

- The decrease of breathing flow in SDB is referred to as:
 - Apneas (where breathing flow stops for an abnormally long period of time)
 - Hypopneas (where breathing flow significantly decreases).¹¹
- The two most common forms of SDB are:
 - 1. Obstructive sleep apnea (OSA):

Obstruction of the upper airway causes repetitive pauses in breathing during sleep. 5

2. Central sleep apnea (CSA)

Malfunction of respiratory control causes a lack of drive to breathe during sleep. This results in periods of insufficient ventilation and compromised oxygen supply.

In central sleep apnea, there is dysfunction in the respiratory control

- **Cheyne-Stokes respiration** (CSR) is another form of SDB, characterised by periods of hyperventilation alternating with periods of breathing cessation (central apneas/hypopneas). This causes waxing and waning of breathing effort.
- CSA-CSR is a common type of sleep-disordered breathing in patients with heart failure, occurring in 30-50 percent of them.^{12, 8}

MEDIA FACTSHEET

The below is an excerpt of a polygraphy recording of a heart failure patient with nocturnal CSA-CSR. This shows the waxing-waning breathing pattern associated with this condition and the increasing and decreasing oxygen saturation levels these patients experience.¹³

Sleep-disordered breathing in heart failure

- Among multiple heart failure co-morbidities, SDB is one of the most common. However it remains the one of the least recognised by cardiologists.⁵
- CSA-CSR can occur as a consequence of heart failure, and can be associated with increasing severity of the condition.^{1,14}
- Both OSA and CSA-CSR interfere with neurohumoral systems^{*}, which may intensify a
 patient's heart failure condition.¹² Deprivation of oxygen affects the sympathetic nervous
 system, worsens the vascular endothelial function and puts stress on the heart.¹⁵
- Studies have indicated that a patient with heart failure and central sleep apnea may have a significantly reduced quality of life, compared to that of one with heart failure alone.¹⁶
- In addition to risk of death, it has also been shown that central SDB may significantly increase the chance of cardiac hospital readmissions in heart failure patients.¹⁷

MEDIA FACTSHEET

*Neurohumoral activation refers to increased activity of the sympathetic nervous system, renin-angiotensin system, vasopressin and atrial natriuretic peptide.

ווכמנוווא אוכבף-עופטועכובע אוכמנווווא ווו ווכמוג ומוועוכ

Treatment of SDB can improve cardiac function and may improve survival in heart failure patients.⁵

Obstructive sleep apnea:

 Moderate to severe cases of sleep apnea may need to be treated using a type of treatment called continuous positive airway pressure (CPAP). This involves using a breathing apparatus to enable breathing while asleep. A mask delivers a continuous supply of compressed air which prevents the airway from closing.

Central sleep apnea / CSA-CSR:

- Treating CSA-CSR using ventilator support devices such as adaptive servo-ventilation (PaceWave[™] ASV) has shown:
 - To normalise nocturnal breathing pattern, improving sleep quality in patients with heart failure and CSA-CSR⁵
 - To normalise the Apnea-Hypopnoea-Index (AHI) and enable breathing. ASVtherapy has also been linked to significant increases in cardiac function⁵
 - That long-term PaceWave[™] ASV treatment of CSA-CSR in heart failure patients may have potentially beneficial effects, particularly improvements in quality of life¹³

References

¹ Remme WJ et al. Public awareness of heart failure in Europe: first results from SHAPE. *Eur Heart J.* 2005; 26: 2413–2421.

² Sanderson JE. Echocardiography for Cardiac Resynchronization Therapy Selection: Fatally Flawed or Misjudged? *J Am Coll Cardiol*, 2009; 53(21): 1960-1964.

³ Jilek C et al. Prognostic impact of sleep disordered breathing and its treatment in heart failure: an observational study. *Eur J Heart Fail*, 2011; 13:68–75.

⁴ Javaheri S et al. Sleep Apnea Testing and Outcomes in a Large Cohort of Medicare Beneficiaries with Newly Diagnosed Heart Failure. *Am J Resp Crit Care*, 2011; 183(4):539-546.

⁵ Cowie M et al. Rationale and design of the SERVE-HF study: treatment of sleep-disordered breathing with predominant central sleep apnoea with adaptive servo-ventilation in patients with chronic heart failure. *Eur J Heart Fail*, 2013; 15(8):937-943.

⁶ Pinna GD et al. Pathophysiological and clinical relevance of simplified monitoring of nocturnal breathing disorders in heart failure patients. *Eur J Heart Fail* 2009; 11:264–272.

⁷ Javaheri S. Basics of Sleep Apnea and Heart Failure. Sleep Apnea and CV Disease – A CardioSource Clinical Community. Available online at <u>http://apnea.cardiosource.org/Basics/2013/02/Basics-of-Sleep-Apnea-and-Heart-Failure.aspx</u> [last accessed, July 2013].

⁸ Akiko N, Seiko M and Yoshinari Y. Therapeutic Strategies for Sleep Apnea in Hypertension and Heart Failure. *Pulm Med*, 2013; 2013:814169.

⁹ McMurray JJ and Pfeffer MA. Heart failure. *Lancet*, 2005; 365:1877–89.

¹⁰ Remme JW and Swedberg K. Guidelines for the diagnosis and treatment of chronic heart failure. *Eur Heart J*, 2001; 22:1527–1560.

¹¹ ResMed. Sleep disordered breathing. <u>http://www.resmed.com/uk/clinicians/sdb/sleep-disordered-breathing-sdb.html?nc=clinicians</u> [last accessed, July 2013].

¹² Oldenburg O et al. Sleep-disordered breathing in patients with symptomatic heart failure, *Eur J Heart Fail*, 2006; 9(3):251-257.

¹³ Oldenburg O. Cheyne-Stokes Respiration in Chronic Heart Failure – Treatment with Adaptive Servoventilation Therapy. *Circ J*, 2012; 76:2305-2317. ¹⁴ Haruki N et al. Comparison of acute and chronic impact of ASV on left chamber geometry and function in

¹⁵ Khayat R et al. Central Sleep Apnea is a Predictor of Cardiac Readmission in Hospitalized Patients with Systolic Heart Failure. *J Card Fail*, 2012; 18:534-540.
 ¹⁶ Carmona-Bernal C et al. Quality of life in patients with congestive heart failure and central sleep apnea. *Sleep*

Med, 2008; 9(6):646-651. ¹⁷ Philippe C et al. Compliance with and efficacy of adaptive servo-ventilation (ASV) versus continuous positive

airway pressure (CPAP) in the treatment of Cheyne-Stokes respiration in heart failure over a six month period. Heart, 2006; 92(3):337-342.