PREVALENCE OF LUNG CANCER

Lung cancer is one of the most common cancers and is the leading cause of cancer death worldwide. Even with substantial improvement in cancer detection and treatment over the past few decades, lung cancer is responsible for about 20 percent of cancer-related deaths worldwide, or about 1.6 million people each year.¹

WHAT IS NON-SMALL CELL LUNG CANCER (NSCLC)?

NSCLC is the most common form of lung cancer, accounting for approximately 85 percent of all lung cancers.¹

There are a number of different genetic mutations associated with NSCLC – making it complex to study, diagnose and treat.²

WHAT IS ANAPLASTIC LYMPHOMA KINASE-POSITIVE (ALK+) NSCLC?

ALK+ NSCLC is a unique subset of lung cancer caused by a mutation in the anaplastic lymphoma kinase, or ALK, gene.

Genetic studies indicate that chromosomal rearrangements in the ALK gene are key drivers in a subset of NSCLC patients, where the altered ALK gene produces an abnormal protein that instructs cancer cells to grow and spread.
PREVALENCE OF ALK+ NSCLC

Between three and five percent of NSCLC patients have the ALK mutation.\(^3\),\(^4\),\(^5\)

There are roughly 40,000 new cases of ALK+ NSCLC worldwide each year.\(^6\)

DIAGNOSIS AND TREATMENT FOR ALK+ NSCLC

Lung cancer patients diagnosed at an earlier stage have a higher chance of survival, but most cases are not detected until later stages.\(^7\) However, advancements in lung cancer research are identifying the underlying genetic differences that may explain how lung cancer develops in different types of people and how factors – such as family history and environment – may be involved, opening up new ways to detect and potentially treat ALK+ NSCLC earlier.\(^8\)

CAP/IASLC/AMP guidelines recommend ALK testing for adenocarcinomas and mixed lung cancers with an adenocarcinoma component, regardless of histologic grade.\(^12\)

CAP, The College of American Pathologists; IASLC, International Association for the Study of Lung Cancer; AMP, Association for Molecular Pathology
5 Wong DW, Leung EL, So KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009; 115(8):1723-33.