Orthopedic Fixation of Skeletally Immature Ankle Fractures in Pediatric Populations Using Bio-Integrative Implants

Evan D. McNall, Mark E. Solomon DPM, FACFAS, Joslin L. Seidel DPM, AACFAS, Hannah R. Schneiders DPM, David Y. Lin MD, FAAOS

Statement of Purpose

Explore the outcomes of transitional ankle fractures after operative stabilization with bio-integrative versus metal alloy fixation devices.

Literature Review

- Fracture rates are higher in children due to their skeletal immaturity.¹
- Most fractures can be treated conservatively; however, some fractures require internal fixation, often performed with metal-alloy fixation devices (e.g., screws).^{2,5}
- In children, it is generally recommended to remove metal implants to prevent future device-related complications.³
- Removal of hardware requires a second surgery, increasing the immediate risks and burdens for patients.³
- Bio-integrative fixation devices may present an alternative to metal alloy fixation devices through minimizing device-related complications and eliminating the need for a second surgery.³⁻¹⁰

Hypothesis

Bio-integrative fixation devices will offer comparable rates of fusion and fixation to metal-alloy devices, with fewer complications, reduced operation rates, decreased costs for patients, and improved quality of life.

Methodology

Level of Evidence: III

Study Design: Chart Review

Retrospective, descriptive, IRB approved, singlecenter study.

• 35 participants, aged 7 to 16 years, with displaced transitional ankle fractures (i.e., Tillaux and triplane), followed to 52 weeks post-operative.

12 treated with bio-integrative OSSIO fiber [®] 4.0 mm cannulated screws (OSSIO Ltd., Caesarea, Israel)

23 treated with metal alloy (stainless steel) 4.0 mm cannulated screws

Inclusion Criteria:

• \leq 17 years of age

Surgical candidates requiring ORIF for displaced transitional ankle fractures

Participants and their authorized legal guardians can understand and follow all study procedures, postoperative care, and attend follow-up visits.

Outcomes:

Radiographic fracture healing post-procedure

Nature and rate of device-related complications, including re-operation rates

Patient cost-efficiency between bio-integrative and metal implants

Quality of life measures

Measurements:

Radiographs: image quality, implant visibility, bony reactions, hardware failure, and fusion rates

Device Complications: Clavien-Dindo system ¹⁰

Cost-efficiency: CPT code billing rates of patient's actual procedure costs averaged across patient populations

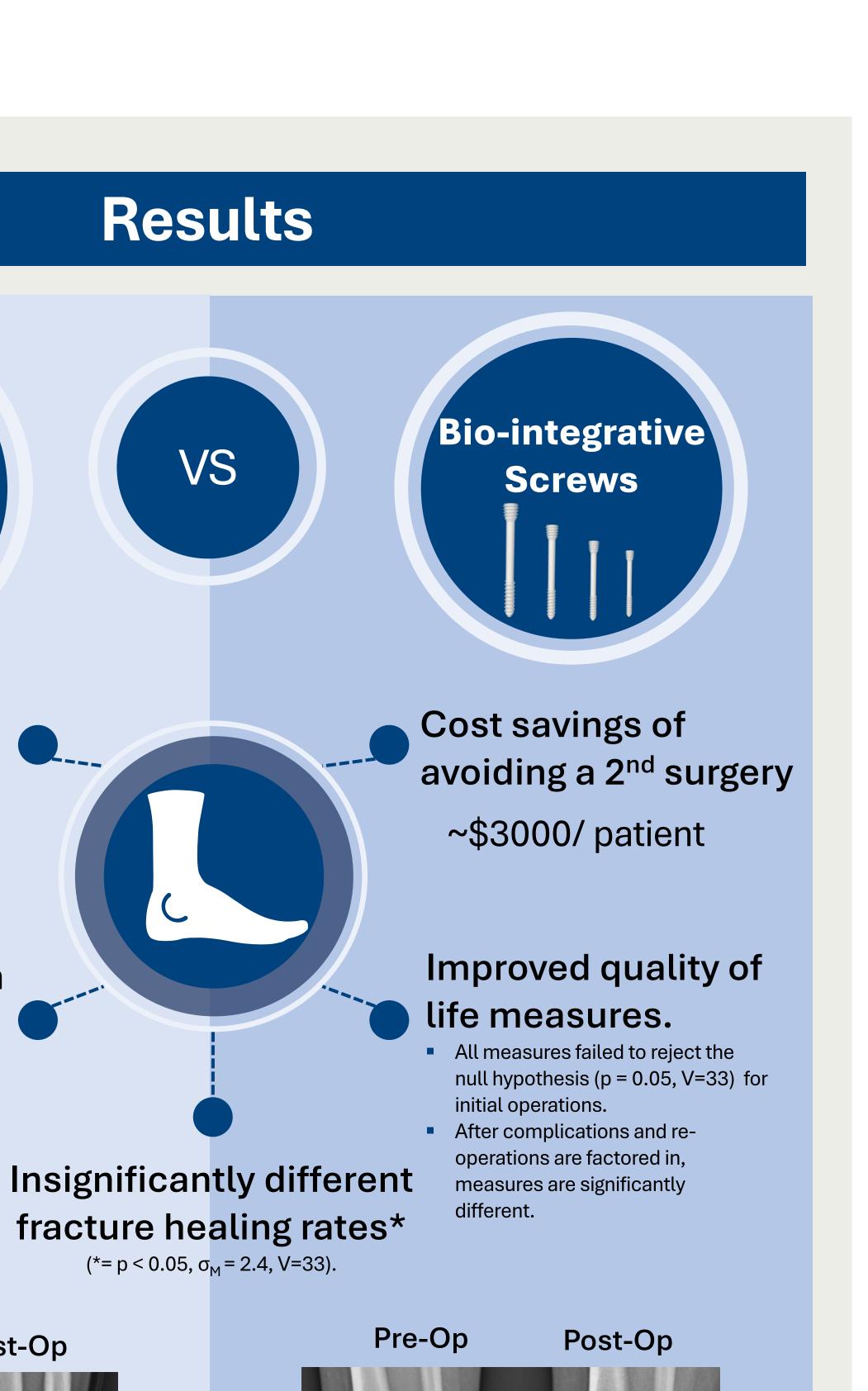
Quality of life measures: amount of time required for patients to regain function of the ankle and return to full activities as well as the rate of post-operative complications and re-operations

Statistical Analysis:

The two patient populations were compared using unpaired t-tests with a p-value of 0.05.

Metal Alloy Screws

Higher Complication Rates*


Symptomatic Implants: 4/23

 Total complication rates • (*= p <0.05, σ_M = 0.18, V=33).

Higher Re-Operation Rates*

- Re-operations:
- Symptomatic implants: 2/23
- Planned removal: 3/23
- Re-operation rates (*= p < 0.05, σ_M = 0.060, V=33).

Pediatric THE ORTHOPEDIC CENTER A MEMBER OF CONSENSUS HEALTH™

Discussion

Conclusions:

Preliminary results suggest that bio-integrative fixation devices are comparable to metal-alloy devices in treating transitional ankle fractures, while offering advantages in terms of complication rates, re-operation rates, costefficiency for patients, and quality of life.

These findings demonstrate bio-integrative fixation devices' viability as an alternative to metal screws, most significantly, by saving a child from a second surgery.

Limitations:

- Relatively small sample size
- Single-centered study
- Retrospective design
- 52-week follow-up period

A larger, multi-center, prospective, extended study would establish a more comprehensive understanding of the long-term efficacy and safety of bio-integrative devices in this specific population.

References

1. Hedström EM, Svensson O, Bergström U, Michno P. Epidemiology of fractures in children and adolescents. Acta Orthop. 2010 Feb 1;81(1):148–53. 2. Canavese F, Andreacchio A, Johari A. Principles and Overview of Pediatric Implantology in Fracture Management. In: Banerjee A, Biberthaler P, Shanmugasundaram S, editors. Handbook of Orthopaedic Trauma

Implantology [Internet]. Singapore: Springer; 2020 [cited 2022 Sep 6]. p. 1–23. Available from: https://doi.org/10.1007/978-981-15-6278-5_88-1

3. Heye P, Matissek C, Seidl C, Varga M, Kassai T, Jozsa G, et al. Making Hardware Removal Unnecessary by Using Resorbable Implants for Osteosynthesis in Children. Children. 2022 Apr;9(4):471. 4. Boulos A, DeFroda SF, Kleiner JE, Thomas N, Gil JA, Cruz AI. Inpatient orthopaedic hardware removal in children: A Cross-Sectional study. J Clin Orthop Trauma. 2017 Jul 1;8(3):270-5.

5. Grün NG, Holweg PL, Donohue N, Klestil T, Weinberg AM. Resorbable implants in pediatric fracture treatment. Innov Surg Sci. 2018 Jun 1;3(2):119–25. 6. Baravarian B, Lindner TP, Merchav-Feuermann R. Advancements in Bone Fixation Utilizing Novel Biointegrative Fixation Technology. Clin Podiatr Med Surg. 2018 Jan 1;35(1):53–62.

7. Štalc J, Cicchinelli LD, Miller S, Sofka CM, Richter M. Fiber-reinforced fixation implant for proximal interphalangeal joint arthrodesis shows advanced implant bio-integration at 2-year follow up. Foot Ankle Surg [Internet]. 2022 Jun 23 [cited 2022 Sep 6]; Available from: https://www.sciencedirect.com/science/article/pii/S1268773122001175

8. Cicchinelli LD, Štalc J, Richter M, Miller S. Prospective, Multicenter, Clinical and Radiographic Evaluation of a Biointegrative, Fiber-Reinforced Implant for Proximal Interphalangeal Joint Arthrodesis. Foot Ankle Orthop. 2020 Oct 1;5(4):2473011420966311

9. Choudhry IK, Wall EJ, Eismann EA, Crawford AH, Wilson L. Functional Outcome Analysis of Triplane and Tillaux Fractures After Closed Reduction and Percutaneous Fixation. J Pediatr Orthop. 2014 Mar;34(2):139–43. 10. Lurie B, Van Rysselberghe N, Pennock AT, Upasani VV. Functional Outcomes of Tillaux and Triplane Fractures with 2 to 5 Millimeters of Intra-Articular Gap. JBJS. 2020 Apr 15;102(8):679-86. 11. Netto C de C, Mansur NS, Tazegul T, Lalevee M, Lee HY, Behrens A, et al. Implant Related Artifact Around Metallic and Bio-Integrative Screws: A CT Scan 3D Hounsfield Unit Assessment. Foot Ankle Orthop. 2022 Jan 1;7(1):2473011421S00174.